Effect of Porous Thrust Surfaces on Detonation Transition and Detonation Tube Impulse
نویسندگان
چکیده
As pulse detonation engine development matures, it becomes increasingly important to consider how practical details such as the implementation of valves and nozzles will affect performance. Inlet valve timing and valveless inlet designs may result in flow of products back upstream and, consequently, reduction in impulse over the ideal case. Although proper inlet design or operation under flowing conditions may minimize these losses, our study addresses the worst-case effect that a porous thrust surface may have on the measured impulse. A series of singlecycle tests have been carried out to measure the impulse in stoichiometric ethylene–oxygen mixtures, initially between 20 and 100 kPa, in a detonation tube with a porous thrust surface. The tested thrust surfaces had blockage ratios ranging from completely solid (100% blockage ratio) to completely open (0% blockage ratio). A 76% loss in impulse was observed with a thrust surface blockage ratio of 52% at an initial pressure of 100 kPa. The time to detonation transition was found to be more dependent on the mixture’s initial pressure than on the thrust surface blockage ratio. A model of the impulse in detonation tubes with porous thrust surfaces was developed.
منابع مشابه
Detonation Tube Impulse in Subatmospheric Environments
Thrust from a multicycle pulse detonation engine operating at practical flight altitudes will vary with surrounding environment pressure. We have carried out the first experimental study using a detonation tube hung in a ballistic pendulum arrangement within a large pressure vessel to determine the effect that the environment has on the single-cycle impulse. Air pressure decreased below 100 kPa...
متن کاملThrust Measurement of Single Tube Valve less Pulse Detonation Engine
In this paper we present the result of measurement of thrust of single tube valve less Pulse detonation engine. The thrust generated by the repetitive detonation from a 48 mm inner diameter ,60 mm outer diameter and 70 cm length (various lengths of tube varies from 20 cm to 100 cm in the steps of 20 cm interval ) detonation tube was measured using load cell. Schelkin spiral was used an accelera...
متن کاملAIAA 2003-1171 Reactive Flow Phenomena in Pulse Detonation Engines
This paper describes oneand two-dimensional numerical simulations, with simplified as well as full reaction kinetics, of a single cycle pulse detonation engine (PDE). Focus of the present studies is on 1) the presence of a nozzle extension at the end of the tube, and its effect on performance parameters as well as noise characteristics, 2) critical “spark ignition” energies associated with the ...
متن کاملAnalytical Models for the Thrust of a Rotating Detonation Engine
Twomodels are proposed for rotating detonation engine performance. The first model is motivated bymodels of pulse detonation engine performance which are based on the pressure-time history within the detonation tube. The present work extends those ideas to treat rotating detonation engines with a control volume analysis that considers the forces within the combustion chamber. The key scaling pa...
متن کاملVenting Optimization of a Pulse
A one-dimensional method-of-characteristics (MOC) code was developed to examine the venting of pulse detonation engines. Comparison with experimental results and twodimensional computational fluid dynamics demonstrates that a reasonably accurate level of simulation can be achieved with a single spatial dimension. A semi-empirical, deflagrative, flame-acceleration model was also constructed and ...
متن کامل